Español | Intranet
   

Welcome to espacio-ICMM!

Through this ICMM space slack account you will be able to navigate the funk, padel, soccer, dance, articles-icmm, scientic-questions channel and many other things such as helping the new icmm-nautas. You can also open your own #channel to find people who share your interests. Join us! Read more

Courses

About

The Instituto de Ciencia de Materiales de Madrid (ICMM) is an institute of the Consejo Superior de Investigaciones Cientificas (CSIC) (Spanish National Research Council) founded in December 1986, that belongs to the Area of Science and Technology of Materials, one of the eight Areas in which the CSIC divides its research activities.

 

Our mission is to create new fundamental and applied knowledge in materials of high technological impact, their processing and their transfer to the productive sectors at local, national and European scales (the true value of materials is in their use), the training of new professionals, and the dissemination of the scientific knowledge.

How to arrive


ICMM Congress

Forthcoming Events

APR22/12:00

Absorción, Reflectividad y Emisividad de ErMnO3 Ortorrómbico y Hexagonal de 2 K a 1700 K en el THz hasta el Infrarrojo Medio:
Apantallamiento de Fonones, Resonancia Fröhlich, Pequeños Polarones y Bipolarones

Néstor E. Massa  read more

Tuning Memristivity by Varying the Oxygen Content in a Mixed Ionic–Electronic Conductor

K. Maas, E. Villepreux, E. Salas‐Colera, J. Rubio‐Zuazo, G. R. Castro, O. Renault, C. Jimenez, H. Roussel, X. Mescot, Q. Rafhay, M. Boudard, M. Burriel



The rising interest shown for adaptable electronics and brain‐inspired neuromorphic hardware increases the need for new device architectures and functional materials to build such devices. The rational design of these memory components also benefits the comprehension and thus the control over the microscopic mechanisms at the origin of memristivity. In oxide‐based valence‐change memories, the control of the oxygen drift and diffusion kinetics is a key aspect in obtaining the gradual analog‐type change in resistance required for artificial synapse applications. However, only a few devices are designed with this in mind, as they are commonly built around ionic insulating active materials. This shortcoming is addressed by using a mixed ionic–electronic conductor as functional memristive material. This work demonstrates how the oxygen content in La2NiO4+δ (L2NO4), tuned through post‐annealing treatments, has a critical influence on the memory characteristics of L2NO4‐based memristive devices. The presence of interstitial oxygen point defects in L2NO4 affects both its structure and electrical properties. High oxygen stoichiometry in the pristine state leads to an increased electrical conductivity, ultimately resulting in an improved memory window with highly multilevel, analog‐type memory programing capabilities, desirable for analog computing and synaptic applications in particular.

Adv. Functional Materials

Figure4. Evolution of the L2NO4 film resistivity with increasing oxygen stoichiometry (δ equals 0.01, 0.04, 0.05, and 0.09, respectively).

ICMM-2020 - Sor Juana Inés de la Cruz, 3, Cantoblanco, 28049 Madrid, Spain. Tel: +34 91 334 9000. info@icmm.csic.es